Equivariant classifying spaces and fibrations
نویسندگان
چکیده
منابع مشابه
Grothendieck fibrations and classifying spaces
Grothendieck fibrations have played an important role in homotopy theory. Among others, theywereused byThomason to describehomotopy colimits of small categories and byQuillen to derive long exact sequences of higher K-theory groups. We construct simplicial objects, namely the fibred and the cleaved nerve, to characterize the homotopy type of a Grothendieck fibration by using the additional stru...
متن کاملClassifying Spaces and Fibrations of Simplicial Sheaves
In this paper, we discuss the construction of classifying spaces of fibre sequences in model categories of simplicial sheaves. One construction proceeds via Brown representability and provides a classification in the pointed model category. The second construction is given by the classifying space of the monoid of homotopy self-equivalences of a simplicial sheaf and provides the unpointed class...
متن کاملCircle-equivariant Classifying Spaces and the Rational Equivariant Sigma Genus
We analyze the circle-equivariant spectrum MStringC which is the equivariant analogue of the cobordism spectrum MU〈6〉 of stably almost complex manifolds with c1 = c2 = 0. In [Gre05], the second author showed how to construct the ring T-spectrum EC representing the T-equivariant elliptic cohomology associated to a rational elliptic curve C. In the case that C is a complex elliptic curve, we cons...
متن کاملSpaces of maps into classifying spaces for equivariant crossed complexes
We give an equivariant version of the homotopy theory of crossed complexes. The applications generalize work on equivariant Eilenberg-Mac Lane spaces, including the non abelian case of dimension 1, and on local systems. It also generalizes the theory of equivariant 2-types, due to Moerdijk and Svensson. Further, we give results not just on the homotopy classification of maps but also on the hom...
متن کاملClassifying Spaces, Virasoro Equivariant Bundles, Elliptic Cohomology and Moonshine
This work explores some connections between the elliptic cohomology of classifying spaces for finite groups, Virasoro equivariant bundles over their loop spaces and Moonshine for finite groups. Our motivation is as follows: up to homotopy we can replace the loop group LBG by the disjoint union ⨿ [γ]BCG(γ) of classifying spaces of centralizers of elements γ representing conjugacy classes of elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1980
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1980-0558180-5